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Abstract
In this paper, we have discuss about the some theorems and proposition of (n, m) normal and (n,m)
quasi-normal operators in Minkowski space.
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1. Introduction

Throughout we shall deal with C™", the space of nxn complex matrices. Let C" be the space
of complex n-tuples, we shall index the components of a complex vector in C" from 0to n-1, that
IS U= (Uo, U, U2, ..., Ur-1) . Let G be the Minkowski metric tensor defined by Gu= (uo, —U1, —Uz,
...,—Un-1) . Clearly the Minkowski metrix matrix

o —i,_,) ®

G = G* and G? = I,. In[9], Minkowski inner product on C" is defined by (u,Vv) = [u, Gv]
, Where [.,.] denotes the conventional Hilbert space inner product. A space with Minkowski inner
product is called the Minkowski space and denoted as M. For A € C"", x,y € C" by using (1),
(Ax,y) = [AX,GY] = [x,A"GY]

=[x, G(GA*G)Y] = [x, GA~Y] = (x, A~y).
where A~ = GA*G. The matrix A~ is called the Minkowski adjoint of A in M. Naturally, we

call a matrix A € C™ m-symmetric in M if A=A~. For A€ C™, let A=, A~, AM At
R(A) and N (A) denote the conjugate transpose, Minkowski adjoint, Minkowski inverse, Moore-
Penrose inverse, range space and null space of a matrix A respectively. I, denote the identity
matrix of order nxn.

Generalized inverses of matrices have important roles in theoretical and numerical methods of
linear algebra. The most significant fact is that we can use generalized inverse of matrices, in the
case when ordinary inverses do not exists, in order to solve some matrix equations. Similar
reasoning can be applied to linear (bounded or unbounded) operators on Banach and Hilbert
spaces.

n-power quasi-normal operators were defined and discussed by mecheri [7] and ould Ahmed
mahamoud sid Ahmed [8]. Alzuraiqi [3] and jibril [6] introduced the n-power normal operators.
Moreover Al-Loz [2] discussed about the concepts of (n, m)-normal powers operators on Hilbert space.
Several characteristics of (n, m) normal and (n, m) qusai-normal operators will be examined in this
paper. We will see some related theorems and proposition are given below.

2. Preliminaries

Definition 2.1. An operator E is said to be normal in M if EXE =E E~

Definition 2.2. An operator E is (n, m) normal operator in M, if E®(E™ ™) =(E™ "~ )E™ here
(n,m) are positive integer.
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Definition 2.3. An operator E is called n-normal in M if E™ is a normal operator in M This is
equivalentto E~ E® = E"E~.

Definition 2.4. An operator E is called n-quasi-normal operator in M, if (E™E™ )E= E(E"E™).

3. (n, m) normal operator in Minkowski space

In this section some basic properties of (n, m) normal operator in Minkowski space are derived.
Proposition 3.1. If E is operator in Minkowski space in M and E be (n,m) normal operator in
Minkowski space in M, then E™™ is (n,m) normal operator in Minkowski space in M.

Proof:

Given

E is (n, m) normal operator in Minkowski space in M

So EM(E™ ™) =(E™ ™ )E"
We know that (EX)~ = (E~)X for each non-negative integer.
To prove E™™ normal operator in Minkowski space M

(EM™)(EM)™ = (E")™ ((E™)™)”
=(E" E"......E") (EME™......E™)"

m-times n-times
= EME"......E" (E™)~ (E™)"....... (E™)~
= E"E".... (E™)~E"....... (E™)~
=(E™)~ (E™)"....... (E™)~ EM E" .......EP
= (EME™....... E™)~ (EM EM......E")
n-times m-times

= ((E™)M~ EH)™
= ((E")™~ EH™
= (E"™)~ (E™™)
(EP™)(EP™)™ = (EM™)™ (E™")
Therefore (E™™) is normal operator in Minkowski space M.

Proposition 3.2. E be (n, m) normal operator in Minkowski space M iff E be (m, n) normal operator
in Minkowski space M.

Proof:

Given E be (n, m) normal operator in Minkowski space M.

So E™ (E™)~ = (E™ )~ E"
Take E™ (E")™ = ((E™ (E")™))"
= (E" (E™)7)"
= ((E™)7E")~
=(E")” E™
Em (En )~ =(En )~ Em
Therefore E be (n, m) normal operator in Minkowski space M.
Proposition 3.3. E be (n, m) normal operator in Minkowski space M. Then
i) E7is (n, m) normal operator in M..
ii) E~! existsthen E~1 is ('n, m) normal operator in M.
iii) E is unitary equivalent to F then, E is (n, m) normal operator in M.

Proof:
1) Given E is (n, m) normal operator in M.
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So, We have E" (E™ )~ = (E™ )~ E"
Replace Eby E~

(E)" (B )™= (V)" E™

(E™)(E™)™ [by using 3.2 proposition]

((E™)™ )™ (E7)"

Therefore (E™)™ ((E™)™ )™ =((E™)~ )™ (E™)"

i) (E7H" (E™H™)™ = ((EH™EM™
=((E™ (E™)™)~! [Since E is (n, m) normal operator]
=((E™~ ) (EMm™
=((E7H™)y™(E™H)"

(E7H™ (E™H7)™ =((E7H™ )y™(E™H)"
Therefore E~1is (n, m) normal operator in Minkowski space M .

iii) Since E is unitary equivalentto Fthen E=IF[~and (IF ™))" = IF"I~
To prove | be (n, m) normal operator in Minkowski space M.

Take E™ (E™)~ = (IFI)" ((IFI7)™)~
= IF*~ ((IF™~ )~
= IF*CI(F™ )~ T~
= |F*(F™ )~ I~
=I(F™ ) F"I~
= I(F™ )~ I"IF"I~
=((F™" I")" IF* I~
=(I(F™ I7))~ I F* I~
= ((1FI™ )™~ (IFI7)"
=(E™)~ E"
Therefore E be (n, m) normal operator in MInkowski space M.

Proposition 3.4. If F is (k,m) normal and (k + 1, m) normal operator in Minkowski space M here
k, m are positive integer then F be (k + 2, m) normal operator in Minkowski space Mand by
induction hypothesis F is (n, m) normal operator in Minkowski space M for all (n, m).

Proof:

Given F be (k, m) normal operator in Minkowski space M and F be (k + 1, m) normal operator in
Minkowski space M

So we have

FK(F™)~ =(F™)~ F* and F**' (F™)~ = (F™)~ Fk+!

Similarly F**2 (F™)~ =F Fk+1 (Fm)~
=F (F™)~ Fk+1

=F(@F™) FkF

=FFF@F™) F

= Fk+1 (FM)~F
= (F™)~ Fk+2

Fk+2 (F™)~ = (F™)~ Fk+2
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Therefore by induction hypothesis F be (k + 2, m) normal operator in Minkowski space M
= F be (n, m) normal operator in Minkowski space M for all n, m.
Theorem 3.5. Let E commutes with F. If E and F are (n, m) normal operators in Minkowski space
M then EF be (n, m) normal operators in Minkowski space M.
Proof:
Let E commutes with Fand (EF)™ = E"F"
Additionally E commutes with F~ and F commutes with E~
Take

((EF)"(EF)™)~ = E"F" (E™F™ )~
=E"F" (F™)™ (E™)”
=E"(F™)" F" (E™)~
=(F™)E" (E™)7F"
= (F™)~(E™ ) E™ F™
=((EF)™)~(EF)"
Hence EF be ( n, m ) normal operators in Minkowski space M.
Proposition 3.6. If F be operator in Minkowski space M, let A= F™* +(F™ )~ , B=
F*-(F™)~ and D=F" (F™)~. F be (n, m) normal operator,
then if D commutes with A and B in M.

Proof:
Given F be (n, m) normal operator.

DA = F" (F™ )~ F" +(F™ )~
= FM(F™)~ F™ + F™ (F™)~ (F™)~
= FMOFM(FMY)~ 4 (F™)~ F (F™)~
= (F"+(F™)" )F (F™ )~
= AD

Therefore DA= AD
Similarly DB = BD

4. (n,m) Quasi-normal operator in Minkowski M

Theorem 4.1. Let F be ( n, m ) quasinormal operator M.then so are

i) y for any scalar

ii) If E is operator in Minkowskispace M which is unitarly equivalentto F in M then E is (
n, m ) quasinormal operator M.

iii) The restriction F /A of F to any closed subspace A of H that redues F. Then F/A is (n,m)
quasinormal operator M.

Proof:

Given F is (n,m) Quasinormal operator in Minkowski space M.

So F*(F"™F)= (F™™F) F"

Here n, m are non-negative integers.

DR (rA™YF)
=y™ F" (Y"F™ yF)
=yt Yy Fr(FTTF)
=y" YUy (F"™F)F"
("F~™ FyF) y™ F"
=A™y F) (yB)"
Hence vy F is (n, m) quasinormal operator in Minkowski space M
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ii) Let E= IFI™ here I is a unitary operator

Take E™ (E”™E) =(FI™)™ ((IFI~ )~™ (IFI7))
| F*I~ (IF"™ 1) IFI™
| FMF~™F) I~
=I(F-™F)F" I~
=(IFF™ " IF ") F" I~
(I~ FD)~™ (IFI™) (IFI)™
(E-™E) E™
E™ (ET™E)=E “™E)E"

Therefore E is (n, m) quasi-normal operator in Minkowski space M.
i) (F/A)"™ ((F/A)™ (F/A))

= (F™A)((F™ IA)(FIA))

= (F*(F™F)/ A)

=((F™F) F"IA)

= ((F™1A)(F/IA)) (F™IA)

= ((FIA)Y™ (FIA)) (FIA™

(F/A)* (F/A)™ (F/A)) = ((FIA)Y™(FIA) (FIA)"
Therefore F/A is (n, m) quasi-normal operator in Minkowski space M.

Theorem 4. 2 If E and F are (n,m ) quasi-normal operator in Minkowski space M such that EF =
FE = E”F = FE = 0 then E + F is (n, m) quasi-normal operator in Minkowski space M.
Proof:

(E+F)"(E+F)™E+F)

=(E™+F™) (E™™ + F~™)(E+F)

= (E" 4+ F")(E"™E + F"™F 4+ E"™F + F~™E)

= (E”EN’"E + F'"F~™F + E"E"™F + F"E"™F + E"F~™E + F'"F™™E
+ (E"F"™E + F"E"™E))

=E""E + FMFTF

= (E"™ME™E + F~™F™"F) [Since E and F are quasi-normal operators]

=(E~™ME"E 4+ F"™F"F)

= (E"MEE™ + F"™FF™)

= (E"™E"™ + E"™F™E + (F~™E™ + F~™F™)F

=( E-™E+F~™F) (E™ + F")

=(E~™E+F~™F + E~™F + F~™E) (E" + F™)

=[(E~™+F~™)E + (E~™+F~™)F] (E™ + F™)

= (E~™+F~™) (E+F) (E™ + F")

= (E +F)"™(E + F)(E™ + F™)

(E+F)"(E+F)™E+F)=(E+F)™™E+F)(E™"+Fm")
Hence E + F is (n, m) quasinormal operator in Minkowski space M.
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Theorem 4.3 If E,,E,, -+, E, are ( n,m ) Quasi normal operator in Minkowski space M. Then
(ELPE,®..QPE,) and (E; QE, ® ... ® E,) are ( n,m ) Quasi normal operator in Minkowski
space M.
proof:

i), DED - DE)(E,PE,®DE)™ (E,DE, ®-DE,))

=(ETOE; @ DENETOE™® - ®E™(E, DE, ® - ®E,)

=EMET™E) @D @ EMES™E,)

=(Ef™E)ET D ... . .....® (E;™E,)E]

=(E"®E™® - QE™(E QE,® - @E))ETOEL @ B EM

(B, ®E, @ @E)™E ®E,®BE))(E PE, ® - DE)"

(EOE® - OE)(E.PE® - BE)™E.RE® - BE))=(Ed

E,® - @E)™E QE® - @BE))EDE, @ DE)"

Therefore (E; @ E, @ ... ® E,)are (n, m) Quasi normal operator in Minkowski space M.

(i) (B, QE Q@ Q@E)((E:®E,® ~QE)™E QE ® - QE))(xn ®...Q0 x,)
=E'QE Q@ QENE™QRE™® - QE™(E, QF ® +QE)(xn ®...Q0 x,)

= EME;™E) @...... Q@ EMET™E ) (4, ®....Q x;)

= (E;™EDE @ oo .. @ (EFTEDE! (%, Q... Q x,)

=((E"®E™® - QE™(E QL Q- QE))EFQE® -~ QEN (5 ®...0 x,)
=((E1®E®QE)™E,QEQ ~QE))EQE® Q@ E) (1 Q...0 x)
Hence (£, ® B, ® @ E)"((E1 ® E, @ @ E) ™E, ® E, ®  ® E))(x; ®....Q x1)

=((Ei®E®QE)™EQ®EQ® - QE))EQEL® ~QE) (1 ®...Q x).
Therefore (E; Q E; ® ... ® E,) are (n, m) Quasi-normal operator in Minkowski space M.
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